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A perturbation solution of the nonlinear oscillation of the form

ẍ + ω2x + bx2 + ax3 = 0

is obtained, using the coherent states constructed out of quantum oscillator states. The equa-
tion of the spine obtained here is compared with that obtained by using an averaging proce-
dure. It is found that the equation obtained in the present case is simpler and different from the
other. Also the method used here has the distinct advantage that it is suitable for any nonlinear
oscillator containing both even and odd higher order terms.
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1. Introduction

In many physical problems nonlinearity is an essential feature. These problems
cannot be solved exactly in general and one has to take recourse to perturbation meth-
ods. In most of the cases a straightforward method breaks down as it gives rise to the
so-called secular terms. To obtain information about solutions of such equations approx-
imation or numerical approach are needed. Various methods are available for treating
nonlinear oscillators analytically (see, e.g., [1–3]). The coherent state formalism [4] has
the advantage that the independent variable appears in the form of exp(iEt) which is a
bounded function, and hence, the problem of secular terms does not arise.

A first-order solution of Duffing nonlinear oscillator (1975)

ẍ + ω2x + ax3 = 0 (1.1)

using the coherent states was obtained by Bhaumik and Dutta Roy [4]. Mahaffey [5]
discussed some physical phenomena in plasma physics which have been found to be
described by an equation in which in addition to the linear and cubic terms there was
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also the quadratic term in the nonlinear oscillator problem. The equation can be written
as

ẍ + ω2x + bx2 + ax3 = 0. (1.2)

At first glance, it might seem to be a trivial extension of the Duffing equation plus
a constant as it can be written in the form

ÿ + ω2
0y + cy3 + d = 0. (1.3)

But, upon closer examination of equation (1.3) it is found that significant differences
can arise between equations (1.2) and (1.3) which include additional frequency shifts in
the linear frequency, effects on the symmetry of the amplitude oscillation about equilib-
rium, possible creation of two extra singularities in the phase plane of the hard spring
case (c > 0), additional anharmonic structure in the resonance response of the system,
and the possibility of hysteresis and jump effects on both sides ofω0. In any physical
system (neglecting dissipation) when there are oscillations about a minimum, a harmonic
oscillator equation with anharmonic terms describes the oscillation. For small oscillation
linear terms are sufficient, but when the oscillations are not small, higher order terms are
needed.

Anharmonic oscillators are often used to test new approximation techniques since
the calculation of the eigenvalues and eigenfunctions leads to challenging mathemat-
ical problems. The anharmonic oscillators are also used to test other computational
approaches which are actually designed for the treatment of many-fermion system [6].
However, in this case some problems still occur [7]. Since Drinfield [8], Jimbo [9]
suggested to generalize the notion of creation and annihilation operators of the usual os-
cillator and to introduceq oscillators [10]. Since then several attempts have been made
on oscillator problems (Chaichian et al. [11]).

This observation suggests that there might exist other types of nonlinearities for
which the frequency of oscillation varies with the amplitude [12]. Mancini [13] studied
the behaviour of a nonlinear oscillator, plunged in a bath modelled by an assembly of
harmonic oscillators, where a master equation approach was developed to consider sev-
eral types of reservoir restricted to the case of small damping. Response of three degree
of freedom system with cubic nonlinearities to harmonic excitation has been recently
studied by El-Bassiouny and Eissa [14].

Therefore, it seems that the anharmonic oscillator defined by equation (1.2) is
worth studying. In the present paper a coherent state method has been used to obtain
a perturbation solution to the quantum anharmonic oscillator problem and obtain the
classical solution in the appropriate limit.

Now, according to Glauber [15] the field coherent states can be constructed from
any of the three mathematical definitions [16]:

(i) The coherent states|α〉 are eigenstates of the harmonic oscillator annihilation oper-
atora, that is,

a|α〉 = α|α〉.
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(ii) The coherent states|α〉 can be obtained by applying a displacement operatorD(α)

which is given by

D(a) = exp
(
αa+ − α+a).

(iii) The coherent states|α〉 are quantum states with a minimum uncertainty relationship

(�p)2(�q)2 =
(

1

2

)2

,

where the operatorsq, p are given by

q = 1√
2

(
a + a+), p = 1√

2

(
a − a+),

and (
�f

)2 = 〈α|(f − 〈
f

〉)2|α〉, where
〈
f

〉 = 〈α|f |α〉.
We have used the definition (i) here. It can be shown that the other definitions (ii)

and (iii) follow [17].
The coherent states are not orthogonal, the overlap of the states is given by

∣∣〈α|β〉∣∣2 = e−|α−β|
2
.

|α〉 and |β〉 are approximately orthogonal when|α − β|2 becomes large. In the next
section we discuss coherent states and the classical limit.

2. The coherent states and the classical limit

The eigenstates of the Hamiltonian

H = p2

2m
+ 1

2
mω2x2 (2.1)

for the harmonic oscillator may be obtained easily using the annihilation and creation
operators. A notation different from that used by Bhaumik and Dutta Roy [4] has been
used here, for example,

a = mωx + ip√
2h̄mω

, a+ = mωx + ip√
2h̄mω

, (2.2)

where the commutation relations are
[
a, a+

] = 1, [a, a] = 0= [
a+, a+

]
. (2.3)

Some errors and misprints have been noticed in their paper which have been corrected
here.
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From equations (2.2) and (2.3) we get

H = h̄ω
(
a+a + 1

2

)
. (2.4)

The state ofn quanta can be written as

|n〉 = 1√
n!

(
a+

)n|0〉. (2.5)

The coherent states for a harmonic oscillator corresponding to the energy eigenvalues
h̄ω(n+ 1/2) can be obtained by superimposing these states [15]. These states are then
over-complete and normalised.

One can take

|α〉 = exp

(−α2

2

) ∞∑
0

αn√
n! |n〉, (2.6)

whereα is a complex number. These numbers are eigenvalues of the annihilation oper-
atora, that is,

a|α〉 = α|α〉. (2.7)

It can be easily shown that

〈α|x|α〉 = 2λ

√
h̄

2mω
cosωt, (2.8)

where

α = −iλ exp(iωt). (2.9)

Hence, for the harmonic oscillator case one can take

|α〉 = Nα
∞∑
n=0

(−iλ)n√
n! exp

(
iEnt

h̄

)
|n〉, (2.10)

where we have writtenEn for nω andNα is the normalization constant.
The classical limit is obtained by lettinḡh→ 0, λ→∞ with

2λ

√
h̄

2mω
→ A,

A being the corresponding classical amplitude of the classical oscillator.

3. The anharmonic oscillator and coherent states

The Hamiltonian for the nonlinear oscillator described by equation (1.2) is

H = p2

2m
+ 1

2
mω2x2 + 1

3
bx3 + 1

4
ax4. (3.1)
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The coherent state method has been applied to this perturbed Hamiltonian to obtain the
eigenstates|α〉′ in terms of the modified eigenstates|n〉′.

To get the coherent state for the Hamiltonian (3.1) we replaceEn by E′n in equa-
tion (2.10),E′n being the perturbed energy for the anharmonic oscillator (3.1), and we
also replace|n〉 by the perturbed state|n〉′. BothE′n and|n〉′ are well known. Hence, we
write

|α〉 = Nλ
∞∑
n=0

(−iλ)n√
n! exp

(
iE′nt
h̄

)
|n〉′, (3.2)

Nλ being the normalization constant.
The perturbed state is given by

|n〉′ = |n〉 + ma

4h̄ω

(
h̄

2mω

)2[
−1

4

√
(n+ 1)(n+ 2)(n+ 3)(n+ 4)|n+ 4〉

+ (2n+ 3)
√
(n+ 1)(n+ 2)|n+ 2〉 − (2n− 1)

√
n(n− 1)|n− 2〉

+ 1

4

√
n(n− 1)(n− 2)(n− 3)|n− 4〉

]

+ mb

3h̄ω

(
h̄

2mω

)3/2[
−1

3

√
(n+ 1)(n+ 2)(n+ 3)|n+ 3〉

− 3(n+ 1)
√
(n+ 1)|n+ 1〉 + 3n

√
n|n− 1〉

+ 1

3

√
n(n− 1)(n− 2)|n− 3〉

]
+O

(
a2

)+O
(
b2

)
, (3.3)

whereas the perturbation energy is given by

E′n = nh̄ω +
h̄2

4mω2

{
3a

2

(
n2+ n+ 1

2

)
− 5b2

3ω2

(
n2+ n+ 11

20

)}
. (3.4)

In view of the Ehrenfest theorem [18] and the vanishing quantum correlations in
the classical limit, the solution of the classical problem can be obtained from the classical
limit of the quantum solution. Thus, to first order ina andb

〈x〉 = lim
λ→∞

〈
α′

∣∣x∣∣α′〉=A cosω1t − bA
2

6ω2
1

(cos 2ω1t + 3)

+ aA3

32ω2
1

(cos 3ω1t − 6 cosω1t)+O
(
a2

)+O
(
b2

)
, (3.5)

where

ω1 = ω
(

1+ 3

8ω2
aA2 − 5

12

b2A2

ω4

)
. (3.6)
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4. Conclusions and discussion

Spines (spines are essentially the curves showing relation between the amplitude
and frequency [5]) of the resonance response curve can be obtained by starting with
equation (1.2). Mahaffey [5] assumed a solution of the equation (1.2) in the form (using
the averaging procedure)

x̄ = A cosω1t + C
and found thatω1 satisfies the equation(

9a2

4

)
A4+

{
3a

(
3ω2

2
− ω2

1

)
− 2b2

}
A2+ 2ω2(ω2− ω2

1

) = 0, (4.1)

where

C = −bA2

[
2

(
ω2+ 3A2a

2

)]−1

. (4.2)

The value ofC obtained from (4.2) is the same as that obtained here (see equa-
tion (3.5)). However, the equation for spine as shown in (4.1) is different from the result
shown in equation (3.6). In the present paperx is an operator and we can only compare
〈α′|x|α′〉 with Mahaffey’s solution. The result obtained here is less complicated than
that of Mahaffey [5]. One significant difference is that in the result obtained here, there
is no real root forb2 > 3aω2/4.

However, owing to the presence of theb term the other conclusions reached in the
paper by Bhaumik and Dutta Roy [4] still remain valid, for example, the asymmetry of
the average value of frequency taken over the half-cycle and the asymmetry of(

dA

dt

)
0,π/2

and

(
dA

dA

)
π,3π/2

.

These can be easily verified by putting the solution (3.3) in equation (1.2) and taking av-
erages ofω(t) andA(t). Recently, quartic, sextic and octic anharmonic oscillators were
studied by Meibner et al. [2,3] using WEC – iteration method which produces accurate
approximations to the energies ofx2m anharmonic oscillators (m = 2,3,4, . . .). But
they did not include any odd powers ofx. Though we have considered the anharmonic
oscillator with cubic and fourth-order terms here, the method could be extended to any
nonlinear oscillator containing higher order terms of both even and odd orders.
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